## Classification with O-PLS-DA

Partial least squares (PLS) is a versatile algorithm which can be used to predict either continuous or discrete/categorical variables. Classification with PLS is termed PLS-DA, where the DA stands for discriminant analysis. The PLS-DA algorithm has many favorable properties for dealing with multivariate data; one of the most important of which is how variable collinearity is dealt with, and the model’s ability to rank variables’ predictive capacities within a multivariate context. Orthogonal signal correction PLS-DA or O-PLS-DA is an extension of PLS-DA which seeks to maximize the explained variance between groups in a single dimension or the first latent variable (LV), and separate the within group variance (orthogonal to classification goal) into orthogonal LVs. The variable loadings and/or coefficient weights from a validated O-PLS-DA model can be used to rank all variables with respect to their performance for discriminating between groups. This can be used part of a dimensional reduction or feature selection task which seek to identify the top predictors for a given model.

Like with most predictive modeling or forecasting tasks, model validation is a critical requirement. Otherwise the produced models maybe overfit or perform no better than coin flips. Model validation is the process of defining the models performance, and thus ensuring that the model’s internal variable rankings are actually informative.

Below is a demonstration of the development and validation of an O-PLS-DA multivariate classification model for the famous Iris data set.

**O-PLS-DA model validation Tutorial**

**Data pretreatment and preparation****Model optimization****Permutation testing****Internal cross-validation****External cross-validation**

The Iris data only contains 4 variables, but the sample sizes are favorable for demonstrating a two tiered testing and training scheme (internal and external cross-validation). However O-PLS really shines when building models with many correlated variables (coming soon).

## Orthogonal Signal Correction Partial Least Squares (O-PLS) in R

I often need to analyze and model very wide data (variables >>>samples), and because of this I gravitate to robust yet relatively simple methods. In my opinion partial least squares (PLS) is a particular useful algorithm. Simply put, PLS is an extension of principal components analysis (PCA), a non-supervised method to maximizing variance explained in X, which instead maximizes the covariance between X and Y(s). Orthogonal signal correction partial least squares (O-PLS) is a variant of PLS which uses orthogonal signal correction to maximize the explained covariance between X and Y on the first latent variable, and components >1 capture variance in X which is orthogonal (or unrelated) to Y.

Because R does not have a simple interface for O-PLS, I am in the process of writing a package, which depends on the existing package pls.

Today I wanted to make a small example of conducting O-PLS in R, and at the same time take a moment to try out the R package knitr and RStudio for markdown generation.

You can take a look at the ** O-PLS/O-PLS-DA tutorials.**

I was extremely impressed with ease of using knitr and generating markdown from code using RStudio. A big thank you to Yihui Xie and the RStudio developers (Joe Cheng). This is an amazing capability which I will make much more use of in the future!

## Multivariate Modeling Strategy

**The following** is an example of a clinical study aimed at identification of circulating metabolites related to disease phenotype or grade/severity/type (tissue histology, 4 classifications including controls).

**The challenge** is to make sense of 300 metabolic measurements for 300 patients.

**The goal** is to identify metabolites related to disease, while accounting covariate meta data such as gender and smoking.

**The steps**

**Exploratory Data Analysis**– principal components analysis (**PCA**)- Statistical Analysis –
**covariate adjustment**and analysis of covariance or ANCOVA **Multivariate Classification Modeling**– orthogonal signal correction partial least squares discriminant analysis (**O-PLS-DA**)

Data exploration is useful for getting an idea of the data structure and to identify unusual or unexpected trends.

PCA above conducted on autoscaled data (300 samples and 300 measurements) was useful for identifying an interesting 2-cluster structure in the sample scores (top left). Unfortunately the goal of the study, disease severity, could not explain this pattern (top center). An unknown covariate was identified causing the observed clustering of samples (top right).

Next various covariate adjustment strategies were applied to the data and evaluated using the unsupervised PCA (bottom left) and the supervised O-PLS-DA.

Even after the initial covariate adjustment for the 2-cluster effect there remained a newly visible covariate (top ;left), the source of which could not me linked to the meta data.

After data pre-treatment and evaluation of testing strategies (top right) the next challenge is to select the best classifiers of disease status. Feature selection was undertaken to improve model performance and simplify its performance.

Variable correlation with O-PLS-DA sample scores and magnitude of variable loading in the model were used to select from the the full feature set (~300) only 64 (21%) top features which explained most of the models classification performance.

**In conclusion **preliminary data exploration was used to identify an unknown source of variance which negatively affected the experimental goal to identify metabolic predictors of disease severity. Multivariate techniques, PCA and O-PLS-DA, were used to identify an optimal data covariate adjustment and hypothesis testing strategy. Finally O-PLS-DA modeling including feature selection, training/testing validations (n=100) and permutation testing (n=100) were used to identify the top features (21%) which were most predictive of patients classifications as displaying or not displaying the disease phenotype.