When you want to get to know and love your data

High Dimensional Biological Data Analysis and Visualization


High dimensional biological data shares many qualities with other forms of data. Typically it is wide (samples << variables), complicated by experiential design and made up of complex relationships driven by both biological and analytical sources of variance. Luckily the powerful combination of R, Cytoscape (< v3) and the R package RCytoscape can be used to generate high dimensional and highly informative representations of complex biological (and really any type of) data. Check out the following examples of network mapping in action or view a more indepth presentation of the techniques used below.


Partial correlation network highlighting changes in tumor compared to control tissue from the same patient.

Tissue network cancer


Biochemical and structural similarity network of changes in tumor compared to control tissue from the same patient.

Cancer tissue network


Hierarchical clusters (color) mapped to a biochemical and structural similarity network displaying difference before and after drug administration.

cough syrup network


Partial correlation network displaying changes in metabolite relationships in response to drug treatment.

Treatment response network


Partial correlation network displaying changes in disease and response to drug treatment.

Treatment effects network


Check out the full presentation below.

Creative Commons License

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s