When you want to get to know and love your data

Principal Components Analysis Shiny App

I’ve recently started experimenting with making Shiny apps, and today I wanted to make a basic app for calculating and visualizing principal components analysis (PCA). Here is the basic interface I came up with. Test drive the app for yourself  or  check out the the R code HERE.

library(shiny)
runGist("5846650")

dataAbove is an example of the user interface which consists of  data upload (from.csv for now), and options for conducting PCA using the  pcaMethods package. The various outputs include visualization of the eigenvalues and cross-validated eigenvalues (q2), which are helpful for selecting the optimal number of model components.scree plotThe PCA scores plot can be used to evaluate extreme (leverage) or moderate (DmodX) outliers. A Hotelling’s T-squared confidence intervals as an ellipse would also be a good addition for this.

ScoresThe variable loadings can be used to evaluate the effects of data scaling and other pre-treatments.

loadingsThe next step is to interface the calculation of PCA to a dynamic plot which can be used to map meta data to plotting characteristics.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 25 other followers